Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

UAV-Assisted Space-Air-Ground Integrated Networks: A Technical Review of Recent Learning Algorithms (2211.14931v2)

Published 27 Nov 2022 in eess.SY, cs.LG, cs.NI, and cs.SY

Abstract: Recent technological advancements in space, air, and ground components have made possible a new network paradigm called space-air-ground integrated network (SAGIN). Unmanned aerial vehicles (UAVs) play a key role in SAGINs. However, due to UAVs' high dynamics and complexity, real-world deployment of a SAGIN becomes a significant barrier to realizing such SAGINs. UAVs are expected to meet key performance requirements with limited maneuverability and resources with space and terrestrial components. Therefore, employing UAVs in various usage scenarios requires well-designed planning in algorithmic approaches. This paper provides an essential review and analysis of recent learning algorithms in a UAV-assisted SAGIN. We consider possible reward functions and discuss the state-of-the-art algorithms for optimizing the reward functions, including Q-learning, deep Q-learning, multi-armed bandit, particle swarm optimization, and satisfaction-based learning algorithms. Unlike other survey papers, we focus on the methodological perspective of the optimization problem, applicable to various missions on a SAGIN. We consider real-world configurations and the 2-dimensional (2D) and 3-dimensional (3D) UAV trajectories to reflect deployment cases. Our simulations suggest the 3D satisfaction-based learning algorithm outperforms other approaches in most cases. With open challenges discussed at the end, we aim to provide design and deployment guidelines for UAV-assisted SAGINs.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.