Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sentence-Level Sign Language Recognition Framework (2211.14447v1)

Published 13 Nov 2022 in cs.CV, cs.AI, and cs.LG

Abstract: We present two solutions to sentence-level SLR. Sentence-level SLR required mapping videos of sign language sentences to sequences of gloss labels. Connectionist Temporal Classification (CTC) has been used as the classifier level of both models. CTC is used to avoid pre-segmenting the sentences into individual words. The first model is an LRCN-based model, and the second model is a Multi-Cue Network. LRCN is a model in which a CNN as a feature extractor is applied to each frame before feeding them into an LSTM. In the first approach, no prior knowledge has been leveraged. Raw frames are fed into an 18-layer LRCN with a CTC on top. In the second approach, three main characteristics (hand shape, hand position, and hand movement information) associated with each sign have been extracted using Mediapipe. 2D landmarks of hand shape have been used to create the skeleton of the hands and then are fed to a CONV-LSTM model. Hand locations and hand positions as relative distance to head are fed to separate LSTMs. All three sources of information have been then integrated into a Multi-Cue network with a CTC classification layer. We evaluated the performance of proposed models on RWTH-PHOENIX-Weather. After performing an excessive search on model hyper-parameters such as the number of feature maps, input size, batch size, sequence length, LSTM memory cell, regularization, and dropout, we were able to achieve 35 Word Error Rate (WER).

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)