Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The smooth output assumption, and why deep networks are better than wide ones (2211.14347v1)

Published 25 Nov 2022 in cs.LG

Abstract: When several models have similar training scores, classical model selection heuristics follow Occam's razor and advise choosing the ones with least capacity. Yet, modern practice with large neural networks has often led to situations where two networks with exactly the same number of parameters score similar on the training set, but the deeper one generalizes better to unseen examples. With this in mind, it is well accepted that deep networks are superior to shallow wide ones. However, theoretically there is no difference between the two. In fact, they are both universal approximators. In this work we propose a new unsupervised measure that predicts how well a model will generalize. We call it the output sharpness, and it is based on the fact that, in reality, boundaries between concepts are generally unsharp. We test this new measure on several neural network settings, and architectures, and show how generally strong the correlation is between our metric, and test set performance. Having established this measure, we give a mathematical probabilistic argument that predicts network depth to be correlated with our proposed measure. After verifying this in real data, we are able to formulate the key argument of the work: output sharpness hampers generalization; deep networks have an in built bias against it; therefore, deep networks beat wide ones. All in all the work not only provides a helpful predictor of overfitting that can be used in practice for model selection (or even regularization), but also provides a much needed theoretical grounding for the success of modern deep neural networks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube