Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Deep Learning Anomaly Detection Method in Textual Data (2211.13900v1)

Published 25 Nov 2022 in cs.CL

Abstract: In this article, we propose using deep learning and transformer architectures combined with classical machine learning algorithms to detect and identify text anomalies in texts. Deep learning model provides a very crucial context information about the textual data which all textual context are converted to a numerical representation. We used multiple machine learning methods such as Sentence Transformers, Auto Encoders, Logistic Regression and Distance calculation methods to predict anomalies. The method are tested on the texts data and we used syntactic data from different source injected into the original text as anomalies or use them as target. Different methods and algorithm are explained in the field of outlier detection and the results of the best technique is presented. These results suggest that our algorithm could potentially reduce false positive rates compared with other anomaly detection methods that we are testing.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.