Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Lessons Learned to Improve the UX Practices in Agile Projects Involving Data Science and Process Automation (2211.13827v1)

Published 24 Nov 2022 in cs.SE

Abstract: Context: User-Centered Design and Agile methodologies focus on human issues. Nevertheless, agile methodologies focus on contact with contracting customers and generating value for them. Usually, the communication between end users and the agile team is mediated by customers. However, they do not know the problems end users face in their routines. Hence, UX issues are typically identified only after the implementation, during user testing and validation. Objective: Aiming to improve the understanding and definition of the problem in agile projects, this research investigates the practices and difficulties experienced by agile teams during the development of data science and process automation projects. Also, we analyze the benefits and the teams' perceptions regarding user participation in these projects. Method: We collected data from four agile teams in an academia-industry collaboration focusing on delivering data science and process automation solutions. Therefore, we applied a carefully designed questionnaire answered by developers, scrum masters, and UX designers. In total, 18 subjects answered the questionnaire. Results: From the results, we identify practices used by the teams to define and understand the problem and to represent the solution. The practices most often used are prototypes and meetings with stakeholders. Another practice that helped the team to understand the problem was using Lean Inceptions. Also, our results present some specific issues regarding data science projects. Conclusion: We observed that end-user participation can be critical to understanding and defining the problem. They help to define elements of the domain and barriers in the implementation. We identified a need for approaches that facilitate user-team communication in data science projects and the need for more detailed requirements representations to support data science solutions.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.