Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Using Selective Masking as a Bridge between Pre-training and Fine-tuning (2211.13815v1)

Published 24 Nov 2022 in cs.CL

Abstract: Pre-training a LLM and then fine-tuning it for downstream tasks has demonstrated state-of-the-art results for various NLP tasks. Pre-training is usually independent of the downstream task, and previous works have shown that this pre-training alone might not be sufficient to capture the task-specific nuances. We propose a way to tailor a pre-trained BERT model for the downstream task via task-specific masking before the standard supervised fine-tuning. For this, a word list is first collected specific to the task. For example, if the task is sentiment classification, we collect a small sample of words representing both positive and negative sentiments. Next, a word's importance for the task, called the word's task score, is measured using the word list. Each word is then assigned a probability of masking based on its task score. We experiment with different masking functions that assign the probability of masking based on the word's task score. The BERT model is further trained on MLM objective, where masking is done using the above strategy. Following this standard supervised fine-tuning is done for different downstream tasks. Results on these tasks show that the selective masking strategy outperforms random masking, indicating its effectiveness.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube