Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Design and Prototyping Distributed CNN Inference Acceleration in Edge Computing (2211.13778v2)

Published 24 Nov 2022 in cs.CV and cs.DC

Abstract: For time-critical IoT applications using deep learning, inference acceleration through distributed computing is a promising approach to meet a stringent deadline. In this paper, we implement a working prototype of a new distributed inference acceleration method HALP using three raspberry Pi 4. HALP accelerates inference by designing a seamless collaboration among edge devices (EDs) in Edge Computing. We maximize the parallelization between communication and computation among the collaborative EDs by optimizing the task partitioning ratio based on the segment-based partitioning. Experimental results show that the distributed inference HALP achieves 1.7x inference acceleration for VGG-16. Then, we combine distributed inference with conventional neural network model compression by setting up different shrinking hyperparameters for MobileNet-V1. In this way, we can further accelerate inference but at the cost of inference accuracy loss. To strike a balance between latency and accuracy, we propose dynamic model selection to select a model which provides the highest accuracy within the latency constraint. It is shown that the model selection with distributed inference HALP can significantly improve service reliability compared to the conventional stand-alone computation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.