Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

CycleGANWM: A CycleGAN watermarking method for ownership verification (2211.13737v2)

Published 24 Nov 2022 in cs.CR

Abstract: Due to the proliferation and widespread use of deep neural networks (DNN), their Intellectual Property Rights (IPR) protection has become increasingly important. This paper presents a novel model watermarking method for an unsupervised image-to-image translation (I2IT) networks, named CycleGAN, which leverage the image translation visual quality and watermark embedding. In this method, a watermark decoder is trained initially. Then the decoder is frozen and used to extract the watermark bits when training the CycleGAN watermarking model. The CycleGAN watermarking (CycleGANWM) is trained with specific loss functions and optimized to get a good performance on both I2IT task and watermark embedding. For watermark verification, this work uses statistical significance test to identify the ownership of the model from the extract watermark bits. We evaluate the robustness of the model against image post-processing and improve it by fine-tuning the model with adding data augmentation on the output images before extracting the watermark bits. We also carry out surrogate model attack under black-box access of the model. The experimental results prove that the proposed method is effective and robust to some image post-processing, and it is able to resist surrogate model attack.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.