Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

CycleGANWM: A CycleGAN watermarking method for ownership verification (2211.13737v2)

Published 24 Nov 2022 in cs.CR

Abstract: Due to the proliferation and widespread use of deep neural networks (DNN), their Intellectual Property Rights (IPR) protection has become increasingly important. This paper presents a novel model watermarking method for an unsupervised image-to-image translation (I2IT) networks, named CycleGAN, which leverage the image translation visual quality and watermark embedding. In this method, a watermark decoder is trained initially. Then the decoder is frozen and used to extract the watermark bits when training the CycleGAN watermarking model. The CycleGAN watermarking (CycleGANWM) is trained with specific loss functions and optimized to get a good performance on both I2IT task and watermark embedding. For watermark verification, this work uses statistical significance test to identify the ownership of the model from the extract watermark bits. We evaluate the robustness of the model against image post-processing and improve it by fine-tuning the model with adding data augmentation on the output images before extracting the watermark bits. We also carry out surrogate model attack under black-box access of the model. The experimental results prove that the proposed method is effective and robust to some image post-processing, and it is able to resist surrogate model attack.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube