Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Asynchronous Computation of Tube-based Model Predictive Control (2211.13725v2)

Published 24 Nov 2022 in eess.SY and cs.SY

Abstract: Tube-based model predictive control (MPC) methods bound deviations from a nominal trajectory due to uncertainties in order to ensure constraint satisfaction. While techniques that compute the tubes online reduce conservativeness and increase performance, they suffer from high and potentially prohibitive computational complexity. This paper presents an asynchronous computation mechanism for system level tube-MPC (SLTMPC), a recently proposed tube-based MPC method which optimizes over both the nominal trajectory and the tubes. Computations are split into a primary and a secondary process, computing the nominal trajectory and the tubes, respectively. This enables running the primary process at a high frequency and moving the computationally complex tube computations to the secondary process. We show that the secondary process can continuously update the tubes, while retaining recursive feasibility of the primary process.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.