Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Self-supervised vision-language pretraining for Medical visual question answering (2211.13594v1)

Published 24 Nov 2022 in cs.CV and cs.AI

Abstract: Medical image visual question answering (VQA) is a task to answer clinical questions, given a radiographic image, which is a challenging problem that requires a model to integrate both vision and language information. To solve medical VQA problems with a limited number of training data, pretrain-finetune paradigm is widely used to improve the model generalization. In this paper, we propose a self-supervised method that applies Masked image modeling, Masked language modeling, Image text matching and Image text alignment via contrastive learning (M2I2) for pretraining on medical image caption dataset, and finetunes to downstream medical VQA tasks. The proposed method achieves state-of-the-art performance on all the three public medical VQA datasets. Our codes and models are available at https://github.com/pengfeiliHEU/M2I2.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.