Papers
Topics
Authors
Recent
2000 character limit reached

Online Regularized Learning Algorithm for Functional Data (2211.13549v1)

Published 24 Nov 2022 in stat.ML and cs.LG

Abstract: In recent years, functional linear models have attracted growing attention in statistics and machine learning, with the aim of recovering the slope function or its functional predictor. This paper considers online regularized learning algorithm for functional linear models in reproducing kernel Hilbert spaces. Convergence analysis of excess prediction error and estimation error are provided with polynomially decaying step-size and constant step-size, respectively. Fast convergence rates can be derived via a capacity dependent analysis. By introducing an explicit regularization term, we uplift the saturation boundary of unregularized online learning algorithms when the step-size decays polynomially, and establish fast convergence rates of estimation error without capacity assumption. However, it remains an open problem to obtain capacity independent convergence rates for the estimation error of the unregularized online learning algorithm with decaying step-size. It also shows that convergence rates of both prediction error and estimation error with constant step-size are competitive with those in the literature.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.