Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MPT: Mesh Pre-Training with Transformers for Human Pose and Mesh Reconstruction (2211.13357v2)

Published 24 Nov 2022 in cs.CV

Abstract: Traditional methods of reconstructing 3D human pose and mesh from single images rely on paired image-mesh datasets, which can be difficult and expensive to obtain. Due to this limitation, model scalability is constrained as well as reconstruction performance. Towards addressing the challenge, we introduce Mesh Pre-Training (MPT), an effective pre-training strategy that leverages large amounts of MoCap data to effectively perform pre-training at scale. We introduce the use of MoCap-generated heatmaps as input representations to the mesh regression transformer and propose a Masked Heatmap Modeling approach for improving pre-training performance. This study demonstrates that pre-training using the proposed MPT allows our models to perform effective inference without requiring fine-tuning. We further show that fine-tuning the pre-trained MPT model considerably improves the accuracy of human mesh reconstruction from single images. Experimental results show that MPT outperforms previous state-of-the-art methods on Human3.6M and 3DPW datasets. As a further application, we benchmark and study MPT on the task of 3D hand reconstruction, showing that our generic pre-training scheme generalizes well to hand pose estimation and achieves promising reconstruction performance.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.