Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Improved Elekes-Szabó type estimates using proximity (2211.13294v1)

Published 23 Nov 2022 in math.CO and cs.CG

Abstract: We prove a new Elekes-Szab\'o type estimate on the size of the intersection of a Cartesian product $A\times B\times C$ with an algebraic surface ${f=0}$ over the reals. In particular, if $A,B,C$ are sets of $N$ real numbers and $f$ is a trivariate polynomial, then either $f$ has a special form that encodes additive group structure (for example $f(x,y,x) = x + y - z$), or $A \times B\times C \cap{f=0}$ has cardinality $O(N{12/7})$. This is an improvement over the previously bound $O(N{11/6})$. We also prove an asymmetric version of our main result, which yields an Elekes-Ronyai type expanding polynomial estimate with exponent $3/2$. This has applications to questions in combinatorial geometry related to the Erd\H{o}s distinct distances problem. Like previous approaches to the problem, we rephrase the question as a $L2$ estimate, which can be analyzed by counting additive quadruples. The latter problem can be recast as an incidence problem involving points and curves in the plane. The new idea in our proof is that we use the order structure of the reals to restrict attention to a smaller collection of proximate additive quadruples.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.