Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

SeedBERT: Recovering Annotator Rating Distributions from an Aggregated Label (2211.13196v1)

Published 23 Nov 2022 in cs.LG and cs.CL

Abstract: Many machine learning tasks -- particularly those in affective computing -- are inherently subjective. When asked to classify facial expressions or to rate an individual's attractiveness, humans may disagree with one another, and no single answer may be objectively correct. However, machine learning datasets commonly have just one "ground truth" label for each sample, so models trained on these labels may not perform well on tasks that are subjective in nature. Though allowing models to learn from the individual annotators' ratings may help, most datasets do not provide annotator-specific labels for each sample. To address this issue, we propose SeedBERT, a method for recovering annotator rating distributions from a single label by inducing pre-trained models to attend to different portions of the input. Our human evaluations indicate that SeedBERT's attention mechanism is consistent with human sources of annotator disagreement. Moreover, in our empirical evaluations using LLMs, SeedBERT demonstrates substantial gains in performance on downstream subjective tasks compared both to standard deep learning models and to other current models that account explicitly for annotator disagreement.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.