Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Introspection-based Explainable Reinforcement Learning in Episodic and Non-episodic Scenarios (2211.12930v1)

Published 23 Nov 2022 in cs.RO and cs.AI

Abstract: With the increasing presence of robotic systems and human-robot environments in today's society, understanding the reasoning behind actions taken by a robot is becoming more important. To increase this understanding, users are provided with explanations as to why a specific action was taken. Among other effects, these explanations improve the trust of users in their robotic partners. One option for creating these explanations is an introspection-based approach which can be used in conjunction with reinforcement learning agents to provide probabilities of success. These can in turn be used to reason about the actions taken by the agent in a human-understandable fashion. In this work, this introspection-based approach is developed and evaluated further on the basis of an episodic and a non-episodic robotics simulation task. Furthermore, an additional normalization step to the Q-values is proposed, which enables the usage of the introspection-based approach on negative and comparatively small Q-values. Results obtained show the viability of introspection for episodic robotics tasks and, additionally, that the introspection-based approach can be used to generate explanations for the actions taken in a non-episodic robotics environment as well.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.