Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Hybrid Learning of Time-Series Inverse Dynamics Models for Locally Isotropic Robot Motion (2211.12921v3)

Published 23 Nov 2022 in cs.RO, cs.SY, and eess.SY

Abstract: Applications of force control and motion planning often rely on an inverse dynamics model to represent the high-dimensional dynamic behavior of robots during motion. The widespread occurrence of low-velocity, small-scale, locally isotropic motion (LIMO) typically complicates the identification of appropriate models due to the exaggeration of dynamic effects and sensory perturbation caused by complex friction and phenomena of hysteresis, e.g., pertaining to joint elasticity. We propose a hybrid model learning base architecture combining a rigid body dynamics model identified by parametric regression and time-series neural network architectures based on multilayer-perceptron, LSTM, and Transformer topologies. Further, we introduce novel joint-wise rotational history encoding, reinforcing temporal information to effectively model dynamic hysteresis. The models are evaluated on a KUKA iiwa 14 during algorithmically generated locally isotropic movements. Together with the rotational encoding, the proposed architectures outperform state-of-the-art baselines by a magnitude of 10$3$ yielding an RMSE of 0.14 Nm. Leveraging the hybrid structure and time-series encoding capabilities, our approach allows for accurate torque estimation, indicating its applicability in critically force-sensitive applications during motion sequences exceeding the capacity of conventional inverse dynamics models while retaining trainability in face of scarce data and explainability due to the employed physics model prior.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.