Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continual Learning of Natural Language Processing Tasks: A Survey (2211.12701v2)

Published 23 Nov 2022 in cs.CL, cs.AI, cs.LG, and cs.NE

Abstract: Continual learning (CL) is a learning paradigm that emulates the human capability of learning and accumulating knowledge continually without forgetting the previously learned knowledge and also transferring the learned knowledge to help learn new tasks better. This survey presents a comprehensive review and analysis of the recent progress of CL in NLP, which has significant differences from CL in computer vision and machine learning. It covers (1) all CL settings with a taxonomy of existing techniques; (2) catastrophic forgetting (CF) prevention, (3) knowledge transfer (KT), which is particularly important for NLP tasks; and (4) some theory and the hidden challenge of inter-task class separation (ICS). (1), (3) and (4) have not been included in the existing survey. Finally, a list of future directions is discussed.

Citations (58)

Summary

We haven't generated a summary for this paper yet.