Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Expressibility-Enhancing Strategies for Quantum Neural Networks (2211.12670v2)

Published 23 Nov 2022 in quant-ph and cs.LG

Abstract: Quantum neural networks (QNNs), represented by parameterized quantum circuits, can be trained in the paradigm of supervised learning to map input data to predictions. Much work has focused on theoretically analyzing the expressive power of QNNs. However, in almost all literature, QNNs' expressive power is numerically validated using only simple univariate functions. We surprisingly discover that state-of-the-art QNNs with strong expressive power can have poor performance in approximating even just a simple sinusoidal function. To fill the gap, we propose four expressibility-enhancing strategies for QNNs: Sinusoidal-friendly embedding, redundant measurement, post-measurement function, and random training data. We analyze the effectiveness of these strategies via mathematical analysis and/or numerical studies including learning complex sinusoidal-based functions. Our results from comparative experiments validate that the four strategies can significantly increase the QNNs' performance in approximating complex multivariable functions and reduce the quantum circuit depth and qubits required.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube