Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Expressibility-Enhancing Strategies for Quantum Neural Networks (2211.12670v2)

Published 23 Nov 2022 in quant-ph and cs.LG

Abstract: Quantum neural networks (QNNs), represented by parameterized quantum circuits, can be trained in the paradigm of supervised learning to map input data to predictions. Much work has focused on theoretically analyzing the expressive power of QNNs. However, in almost all literature, QNNs' expressive power is numerically validated using only simple univariate functions. We surprisingly discover that state-of-the-art QNNs with strong expressive power can have poor performance in approximating even just a simple sinusoidal function. To fill the gap, we propose four expressibility-enhancing strategies for QNNs: Sinusoidal-friendly embedding, redundant measurement, post-measurement function, and random training data. We analyze the effectiveness of these strategies via mathematical analysis and/or numerical studies including learning complex sinusoidal-based functions. Our results from comparative experiments validate that the four strategies can significantly increase the QNNs' performance in approximating complex multivariable functions and reduce the quantum circuit depth and qubits required.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)