Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Burer-Monteiro SDP method can fail even above the Barvinok-Pataki bound (2211.12389v1)

Published 22 Nov 2022 in math.OC and cs.DS

Abstract: The most widely used technique for solving large-scale semidefinite programs (SDPs) in practice is the non-convex Burer-Monteiro method, which explicitly maintains a low-rank SDP solution for memory efficiency. There has been much recent interest in obtaining a better theoretical understanding of the Burer-Monteiro method. When the maximum allowed rank $p$ of the SDP solution is above the Barvinok-Pataki bound (where a globally optimal solution of rank at most $p$ is guaranteed to exist), a recent line of work established convergence to a global optimum for generic or smoothed instances of the problem. However, it was open whether there even exists an instance in this regime where the Burer-Monteiro method fails. We prove that the Burer-Monteiro method can fail for the Max-Cut SDP on $n$ vertices when the rank is above the Barvinok-Pataki bound ($p \ge \sqrt{2n}$). We provide a family of instances that have spurious local minima even when the rank $p = n/2$. Combined with existing guarantees, this settles the question of the existence of spurious local minima for the Max-Cut formulation in all ranges of the rank and justifies the use of beyond worst-case paradigms like smoothed analysis to obtain guarantees for the Burer-Monteiro method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Liam O'Carroll (8 papers)
  2. Vaidehi Srinivas (7 papers)
  3. Aravindan Vijayaraghavan (46 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.