Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Reinforcement Learning Badminton Environment for Simulating Player Tactics (Student Abstract) (2211.12234v1)

Published 22 Nov 2022 in cs.LG

Abstract: Recent techniques for analyzing sports precisely has stimulated various approaches to improve player performance and fan engagement. However, existing approaches are only able to evaluate offline performance since testing in real-time matches requires exhaustive costs and cannot be replicated. To test in a safe and reproducible simulator, we focus on turn-based sports and introduce a badminton environment by simulating rallies with different angles of view and designing the states, actions, and training procedures. This benefits not only coaches and players by simulating past matches for tactic investigation, but also researchers from rapidly evaluating their novel algorithms.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.