Accelerated Solutions of Coupled Phase-Field Problems using Generative Adversarial Networks (2211.12084v2)
Abstract: Multiphysics problems such as multicomponent diffusion, phase transformations in multiphase systems and alloy solidification involve numerical solution of a coupled system of nonlinear partial differential equations (PDEs). Numerical solutions of these PDEs using mesh-based methods require spatiotemporal discretization of these equations. Hence, the numerical solutions are often sensitive to discretization parameters and may have inaccuracies (resulting from grid-based approximations). Moreover, choice of finer mesh for higher accuracy make these methods computationally expensive. Neural network-based PDE solvers are emerging as robust alternatives to conventional numerical methods because these use machine learnable structures that are grid-independent, fast and accurate. However, neural network based solvers require large amount of training data, thus affecting their generalizabilty and scalability. These concerns become more acute for coupled systems of time-dependent PDEs. To address these issues, we develop a new neural network based framework that uses encoder-decoder based conditional Generative Adversarial Networks with ConvLSTM layers to solve a system of Cahn-Hilliard equations. These equations govern microstructural evolution of a ternary alloy undergoing spinodal decomposition when quenched inside a three-phase miscibility gap. We show that the trained models are mesh and scale-independent, thereby warranting application as effective neural operators.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.