Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 119 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Leveraging Reinforcement Learning for Task Resource Allocation in Scientific Workflows (2211.12076v2)

Published 22 Nov 2022 in cs.DC

Abstract: Scientific workflows are designed as directed acyclic graphs (DAGs) and consist of multiple dependent task definitions. They are executed over a large amount of data, often resulting in thousands of tasks with heterogeneous compute requirements and long runtimes, even on cluster infrastructures. In order to optimize the workflow performance, enough resources, e.g., CPU and memory, need to be provisioned for the respective tasks. Typically, workflow systems rely on user resource estimates which are known to be highly error-prone and can result in over- or underprovisioning. While resource overprovisioning leads to high resource wastage, underprovisioning can result in long runtimes or even failed tasks. In this paper, we propose two different reinforcement learning approaches based on gradient bandits and Q-learning, respectively, in order to minimize resource wastage by selecting suitable CPU and memory allocations. We provide a prototypical implementation in the well-known scientific workflow management system Nextflow, evaluate our approaches with five workflows, and compare them against the default resource configurations and a state-of-the-art feedback loop baseline. The evaluation yields that our reinforcement learning approaches significantly reduce resource wastage compared to the default configuration. Further, our approaches also reduce the allocated CPU hours compared to the state-of-the-art feedback loop by 6.79% and 24.53%.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.