Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerating Diffusion Sampling with Classifier-based Feature Distillation (2211.12039v2)

Published 22 Nov 2022 in cs.CV

Abstract: Although diffusion model has shown great potential for generating higher quality images than GANs, slow sampling speed hinders its wide application in practice. Progressive distillation is thus proposed for fast sampling by progressively aligning output images of $N$-step teacher sampler with $N/2$-step student sampler. In this paper, we argue that this distillation-based accelerating method can be further improved, especially for few-step samplers, with our proposed \textbf{C}lassifier-based \textbf{F}eature \textbf{D}istillation (CFD). Instead of aligning output images, we distill teacher's sharpened feature distribution into the student with a dataset-independent classifier, making the student focus on those important features to improve performance. We also introduce a dataset-oriented loss to further optimize the model. Experiments on CIFAR-10 show the superiority of our method in achieving high quality and fast sampling. Code is provided at \url{https://github.com/zju-SWJ/RCFD}.

Citations (13)

Summary

We haven't generated a summary for this paper yet.