Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

PhAST: Physics-Aware, Scalable, and Task-specific GNNs for Accelerated Catalyst Design (2211.12020v4)

Published 22 Nov 2022 in cs.LG and physics.comp-ph

Abstract: Mitigating the climate crisis requires a rapid transition towards lower-carbon energy. Catalyst materials play a crucial role in the electrochemical reactions involved in numerous industrial processes key to this transition, such as renewable energy storage and electrofuel synthesis. To reduce the energy spent on such activities, we must quickly discover more efficient catalysts to drive electrochemical reactions. Machine learning (ML) holds the potential to efficiently model materials properties from large amounts of data, accelerating electrocatalyst design. The Open Catalyst Project OC20 dataset was constructed to that end. However, ML models trained on OC20 are still neither scalable nor accurate enough for practical applications. In this paper, we propose task-specific innovations applicable to most architectures, enhancing both computational efficiency and accuracy. This includes improvements in (1) the graph creation step, (2) atom representations, (3) the energy prediction head, and (4) the force prediction head. We describe these contributions, referred to as PhAST, and evaluate them thoroughly on multiple architectures. Overall, PhAST improves energy MAE by 4 to 42$\%$ while dividing compute time by 3 to 8$\times$ depending on the targeted task/model. PhAST also enables CPU training, leading to 40$\times$ speedups in highly parallelized settings. Python package: \url{https://phast.readthedocs.io}.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.