Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SemanticLoop: loop closure with 3D semantic graph matching (2211.11977v1)

Published 22 Nov 2022 in cs.RO

Abstract: Loop closure can effectively correct the accumulated error in robot localization, which plays a critical role in the long-term navigation of the robot. Traditional appearance-based methods rely on local features and are prone to failure in ambiguous environments. On the other hand, object recognition can infer objects' category, pose, and extent. These objects can serve as stable semantic landmarks for viewpoint-independent and non-ambiguous loop closure. However, there is a critical object-level data association problem due to the lack of efficient and robust algorithms. We introduce a novel object-level data association algorithm, which incorporates IoU, instance-level embedding, and detection uncertainty, formulated as a linear assignment problem. Then, we model the objects as TSDF volumes and represent the environment as a 3D graph with semantics and topology. Next, we propose a graph matching-based loop detection based on the reconstructed 3D semantic graphs and correct the accumulated error by aligning the matched objects. Finally, we refine the object poses and camera trajectory in an object-level pose graph optimization. Experimental results show that the proposed object-level data association method significantly outperforms the commonly used nearest-neighbor method in accuracy. Our graph matching-based loop closure is more robust to environmental appearance changes than existing appearance-based methods.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube