Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explaining Random Forests using Bipolar Argumentation and Markov Networks (Technical Report) (2211.11699v1)

Published 21 Nov 2022 in cs.AI, cs.LG, and cs.LO

Abstract: Random forests are decision tree ensembles that can be used to solve a variety of machine learning problems. However, as the number of trees and their individual size can be large, their decision making process is often incomprehensible. In order to reason about the decision process, we propose representing it as an argumentation problem. We generalize sufficient and necessary argumentative explanations using a Markov network encoding, discuss the relevance of these explanations and establish relationships to families of abductive explanations from the literature. As the complexity of the explanation problems is high, we discuss a probabilistic approximation algorithm and present first experimental results.

Citations (9)

Summary

We haven't generated a summary for this paper yet.