Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Explaining Random Forests using Bipolar Argumentation and Markov Networks (Technical Report) (2211.11699v1)

Published 21 Nov 2022 in cs.AI, cs.LG, and cs.LO

Abstract: Random forests are decision tree ensembles that can be used to solve a variety of machine learning problems. However, as the number of trees and their individual size can be large, their decision making process is often incomprehensible. In order to reason about the decision process, we propose representing it as an argumentation problem. We generalize sufficient and necessary argumentative explanations using a Markov network encoding, discuss the relevance of these explanations and establish relationships to families of abductive explanations from the literature. As the complexity of the explanation problems is high, we discuss a probabilistic approximation algorithm and present first experimental results.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.