Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Framework for Auditable Synthetic Data Generation (2211.11540v1)

Published 21 Nov 2022 in cs.CR

Abstract: Synthetic data has gained significant momentum thanks to sophisticated machine learning tools that enable the synthesis of high-dimensional datasets. However, many generation techniques do not give the data controller control over what statistical patterns are captured, leading to concerns over privacy protection. While synthetic records are not linked to a particular real-world individual, they can reveal information about users indirectly which may be unacceptable for data owners. There is thus a need to empirically verify the privacy of synthetic data -- a particularly challenging task in high-dimensional data. In this paper we present a general framework for synthetic data generation that gives data controllers full control over which statistical properties the synthetic data ought to preserve, what exact information loss is acceptable, and how to quantify it. The benefits of the approach are that (1) one can generate synthetic data that results in high utility for a given task, while (2) empirically validating that only statistics considered safe by the data curator are used to generate the data. We thus show the potential for synthetic data to be an effective means of releasing confidential data safely, while retaining useful information for analysts.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.