Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Toeplitz Low-Rank Approximation with Sublinear Query Complexity (2211.11328v1)

Published 21 Nov 2022 in cs.DS, cs.NA, and math.NA

Abstract: We present a sublinear query algorithm for outputting a near-optimal low-rank approximation to any positive semidefinite Toeplitz matrix $T \in \mathbb{R}{d \times d}$. In particular, for any integer rank $k \leq d$ and $\epsilon,\delta > 0$, our algorithm makes $\tilde{O} \left (k2 \cdot \log(1/\delta) \cdot \text{poly}(1/\epsilon) \right )$ queries to the entries of $T$ and outputs a rank $\tilde{O} \left (k \cdot \log(1/\delta)/\epsilon\right )$ matrix $\tilde{T} \in \mathbb{R}{d \times d}$ such that $| T - \tilde{T}|_F \leq (1+\epsilon) \cdot |T-T_k|_F + \delta |T|_F$. Here, $|\cdot|_F$ is the Frobenius norm and $T_k$ is the optimal rank-$k$ approximation to $T$, given by projection onto its top $k$ eigenvectors. $\tilde{O}(\cdot)$ hides $\text{polylog}(d) $ factors. Our algorithm is \emph{structure-preserving}, in that the approximation $\tilde{T}$ is also Toeplitz. A key technical contribution is a proof that any positive semidefinite Toeplitz matrix in fact has a near-optimal low-rank approximation which is itself Toeplitz. Surprisingly, this basic existence result was not previously known. Building on this result, along with the well-established off-grid Fourier structure of Toeplitz matrices [Cybenko'82], we show that Toeplitz $\tilde{T}$ with near optimal error can be recovered with a small number of random queries via a leverage-score-based off-grid sparse Fourier sampling scheme.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.