Papers
Topics
Authors
Recent
2000 character limit reached

Recovering Fine Details for Neural Implicit Surface Reconstruction (2211.11320v1)

Published 21 Nov 2022 in cs.CV

Abstract: Recent works on implicit neural representations have made significant strides. Learning implicit neural surfaces using volume rendering has gained popularity in multi-view reconstruction without 3D supervision. However, accurately recovering fine details is still challenging, due to the underlying ambiguity of geometry and appearance representation. In this paper, we present D-NeuS, a volume rendering-base neural implicit surface reconstruction method capable to recover fine geometry details, which extends NeuS by two additional loss functions targeting enhanced reconstruction quality. First, we encourage the rendered surface points from alpha compositing to have zero signed distance values, alleviating the geometry bias arising from transforming SDF to density for volume rendering. Second, we impose multi-view feature consistency on the surface points, derived by interpolating SDF zero-crossings from sampled points along rays. Extensive quantitative and qualitative results demonstrate that our method reconstructs high-accuracy surfaces with details, and outperforms the state of the art.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.