Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Optimal Extended Neighbourhood Rule $k$ Nearest Neighbours Ensemble (2211.11278v2)

Published 21 Nov 2022 in stat.ML and cs.LG

Abstract: The traditional k nearest neighbor (kNN) approach uses a distance formula within a spherical region to determine the k closest training observations to a test sample point. However, this approach may not work well when test point is located outside this region. Moreover, aggregating many base kNN learners can result in poor ensemble performance due to high classification errors. To address these issues, a new optimal extended neighborhood rule based ensemble method is proposed in this paper. This rule determines neighbors in k steps starting from the closest sample point to the unseen observation and selecting subsequent nearest data points until the required number of observations is reached. Each base model is constructed on a bootstrap sample with a random subset of features, and optimal models are selected based on out-of-bag performance after building a sufficient number of models. The proposed ensemble is compared with state-of-the-art methods on 17 benchmark datasets using accuracy, Cohen's kappa, and Brier score (BS). The performance of the proposed method is also assessed by adding contrived features in the original data.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets