Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Optimal quaternary linear codes with one-dimensional Hermitian hull and the related EAQECCs (2211.11147v2)

Published 21 Nov 2022 in cs.IT and math.IT

Abstract: Linear codes with small hulls over finite fields have been extensively studied due to their practical applications in computational complexity and information protection. In this paper, we develop a general method to determine the exact value of $D_4H(n,k,1)$ for $n\leq 12$ or $k\in {1,2,3,n-1,n-2,n-3}$, where $D_4H(n,k,1)$ denotes the largest minimum distance among all quaternary linear $[n,k]$ codes with one-dimensional Hermitian hull. As a consequence, we solve a conjecture proposed by Mankean and Jitman on the largest minimum distance of a quaternary linear code with one-dimensional Hermitian hull. As an application, we construct some binary entanglement-assisted quantum error-correcting codes (EAQECCs) from quaternary linear codes with one-dimensional Hermitian hull. Some of these EAQECCs are optimal codes, and some of them are better than previously known ones.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.