Papers
Topics
Authors
Recent
2000 character limit reached

PointResNet: Residual Network for 3D Point Cloud Segmentation and Classification (2211.11040v1)

Published 20 Nov 2022 in cs.CV

Abstract: Point cloud segmentation and classification are some of the primary tasks in 3D computer vision with applications ranging from augmented reality to robotics. However, processing point clouds using deep learning-based algorithms is quite challenging due to the irregular point formats. Voxelization or 3D grid-based representation are different ways of applying deep neural networks to this problem. In this paper, we propose PointResNet, a residual block-based approach. Our model directly processes the 3D points, using a deep neural network for the segmentation and classification tasks. The main components of the architecture are: 1) residual blocks and 2) multi-layered perceptron (MLP). We show that it preserves profound features and structural information, which are useful for segmentation and classification tasks. The experimental evaluations demonstrate that the proposed model produces the best results for segmentation and comparable results for classification in comparison to the conventional baselines.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.