Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

CoCoNet: Coupled Contrastive Learning Network with Multi-level Feature Ensemble for Multi-modality Image Fusion (2211.10960v3)

Published 20 Nov 2022 in cs.CV

Abstract: Infrared and visible image fusion targets to provide an informative image by combining complementary information from different sensors. Existing learning-based fusion approaches attempt to construct various loss functions to preserve complementary features, while neglecting to discover the inter-relationship between the two modalities, leading to redundant or even invalid information on the fusion results. Moreover, most methods focus on strengthening the network with an increase in depth while neglecting the importance of feature transmission, causing vital information degeneration. To alleviate these issues, we propose a coupled contrastive learning network, dubbed CoCoNet, to realize infrared and visible image fusion in an end-to-end manner. Concretely, to simultaneously retain typical features from both modalities and to avoid artifacts emerging on the fused result, we develop a coupled contrastive constraint in our loss function. In a fused image, its foreground target / background detail part is pulled close to the infrared / visible source and pushed far away from the visible / infrared source in the representation space. We further exploit image characteristics to provide data-sensitive weights, allowing our loss function to build a more reliable relationship with source images. A multi-level attention module is established to learn rich hierarchical feature representation and to comprehensively transfer features in the fusion process. We also apply the proposed CoCoNet on medical image fusion of different types, e.g., magnetic resonance image, positron emission tomography image, and single photon emission computed tomography image. Extensive experiments demonstrate that our method achieves state-of-the-art (SOTA) performance under both subjective and objective evaluation, especially in preserving prominent targets and recovering vital textural details.

Citations (69)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube