Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

On the convergence analysis of DCA (2211.10942v1)

Published 20 Nov 2022 in math.OC, cs.NA, and math.NA

Abstract: In this paper, we propose a clean and general proof framework to establish the convergence analysis of the Difference-of-Convex (DC) programming algorithm (DCA) for both standard DC program and convex constrained DC program. We first discuss suitable assumptions for the well-definiteness of DCA. Then, we focus on the convergence analysis of DCA, in particular, the global convergence of the sequence ${xk}$ generated by DCA under the Lojasiewicz subgradient inequality and the Kurdyka-Lojasiewicz property respectively. Moreover, the convergence rate for the sequences ${f(xk)}$ and ${|xk-x*|}$ are also investigated. We hope that the proof framework presented in this article will be a useful tool to conveniently establish the convergence analysis for many variants of DCA and new DCA-type algorithms.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)