Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Diffeomorphic Information Neural Estimation (2211.10856v1)

Published 20 Nov 2022 in cs.LG, cs.IT, and math.IT

Abstract: Mutual Information (MI) and Conditional Mutual Information (CMI) are multi-purpose tools from information theory that are able to naturally measure the statistical dependencies between random variables, thus they are usually of central interest in several statistical and machine learning tasks, such as conditional independence testing and representation learning. However, estimating CMI, or even MI, is infamously challenging due the intractable formulation. In this study, we introduce DINE (Diffeomorphic Information Neural Estimator)-a novel approach for estimating CMI of continuous random variables, inspired by the invariance of CMI over diffeomorphic maps. We show that the variables of interest can be replaced with appropriate surrogates that follow simpler distributions, allowing the CMI to be efficiently evaluated via analytical solutions. Additionally, we demonstrate the quality of the proposed estimator in comparison with state-of-the-arts in three important tasks, including estimating MI, CMI, as well as its application in conditional independence testing. The empirical evaluations show that DINE consistently outperforms competitors in all tasks and is able to adapt very well to complex and high-dimensional relationships.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)