Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards Robust Dataset Learning (2211.10752v1)

Published 19 Nov 2022 in cs.CV

Abstract: Adversarial training has been actively studied in recent computer vision research to improve the robustness of models. However, due to the huge computational cost of generating adversarial samples, adversarial training methods are often slow. In this paper, we study the problem of learning a robust dataset such that any classifier naturally trained on the dataset is adversarially robust. Such a dataset benefits the downstream tasks as natural training is much faster than adversarial training, and demonstrates that the desired property of robustness is transferable between models and data. In this work, we propose a principled, tri-level optimization to formulate the robust dataset learning problem. We show that, under an abstraction model that characterizes robust vs. non-robust features, the proposed method provably learns a robust dataset. Extensive experiments on MNIST, CIFAR10, and TinyImageNet demostrate the effectiveness of our algorithm with different network initializations and architectures.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.