Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

EDEN: A Plug-in Equivariant Distance Encoding to Beyond the 1-WL Test (2211.10739v1)

Published 19 Nov 2022 in cs.LG

Abstract: The message-passing scheme is the core of graph representation learning. While most existing message-passing graph neural networks (MPNNs) are permutation-invariant in graph-level representation learning and permutation-equivariant in node- and edge-level representation learning, their expressive power is commonly limited by the 1-Weisfeiler-Lehman (1-WL) graph isomorphism test. Recently proposed expressive graph neural networks (GNNs) with specially designed complex message-passing mechanisms are not practical. To bridge the gap, we propose a plug-in Equivariant Distance ENcoding (EDEN) for MPNNs. EDEN is derived from a series of interpretable transformations on the graph's distance matrix. We theoretically prove that EDEN is permutation-equivariant for all level graph representation learning, and we empirically illustrate that EDEN's expressive power can reach up to the 3-WL test. Extensive experiments on real-world datasets show that combining EDEN with conventional GNNs surpasses recent advanced GNNs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.