Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Stochastic Second-Order Proximal Method for Distributed Optimization (2211.10591v1)

Published 19 Nov 2022 in math.OC, cs.SY, and eess.SY

Abstract: In this paper, we propose a distributed stochastic second-order proximal method that enables agents in a network to cooperatively minimize the sum of their local loss functions without any centralized coordination. The proposed algorithm, referred to as St-SoPro, incorporates a decentralized second-order approximation into an augmented Lagrangian function, and then randomly samples the local gradients and Hessian matrices of the agents, so that it is computationally and memory-wise efficient, particularly for large-scale optimization problems. We show that for globally restricted strongly convex problems, the expected optimality error of St-SoPro asymptotically drops below an explicit error bound at a linear rate, and the error bound can be arbitrarily small with proper parameter settings. Simulations over real machine learning datasets demonstrate that St-SoPro outperforms several state-of-the-art distributed stochastic first-order methods in terms of convergence speed as well as computation and communication costs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube