Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient Determinant Maximization for All Matroids (2211.10507v1)

Published 18 Nov 2022 in cs.DS and math.CO

Abstract: Determinant maximization provides an elegant generalization of problems in many areas, including convex geometry, statistics, machine learning, fair allocation of goods, and network design. In an instance of the determinant maximization problem, we are given a collection of vectors $v_1,\ldots, v_n \in \mathbb{R}d$, and the goal is to pick a subset $S\subseteq [n]$ of given vectors to maximize the determinant of the matrix $\sum_{i \in S} v_iv_i\top$, where the picked set of vectors $S$ must satisfy some combinatorial constraint such as cardinality constraint ($|S| \leq k$) or matroid constraint ($S$ is a basis of a matroid defined on $[n]$). In this work, we give a combinatorial algorithm for the determinant maximization problem under a matroid constraint that achieves $O(d{O(d)})$-approximation for any matroid of rank $r\geq d$. This complements the recent result of~\cite{BrownLPST22} that achieves a similar bound for matroids of rank $r\leq d$, relying on a geometric interpretation of the determinant. Our result matches the best-known estimation algorithms~\cite{madan2020maximizing} for the problem, which could estimate the objective value but could not give an approximate solution with a similar guarantee. Our work follows the framework developed by~\cite{BrownLPST22} of using matroid intersection based algorithms for determinant maximization. To overcome the lack of a simple geometric interpretation of the objective when $r \geq d$, our approach combines ideas from combinatorial optimization with algebraic properties of the determinant. We also critically use the properties of a convex programming relaxation of the problem introduced by~\cite{madan2020maximizing}.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube