Papers
Topics
Authors
Recent
2000 character limit reached

Compiling Structured Tensor Algebra (2211.10482v1)

Published 18 Nov 2022 in cs.PL, cs.MS, and cs.SC

Abstract: Tensor algebra is essential for data-intensive workloads in various computational domains. Computational scientists face a trade-off between the specialization degree provided by dense tensor algebra and the algorithmic efficiency that leverages the structure provided by sparse tensors. This paper presents StructTensor, a framework that symbolically computes structure at compilation time. This is enabled by Structured Tensor Unified Representation (STUR), an intermediate language that can capture tensor computations as well as their sparsity and redundancy structures. Through a mathematical view of lossless tensor computations, we show that our symbolic structure computation and the related optimizations are sound. Finally, for different tensor computation workloads and structures, we experimentally show how capturing the symbolic structure can result in outperforming state-of-the-art frameworks for both dense and sparse tensor algebra.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.