Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Prophet-Inequalities over Time (2211.10471v1)

Published 18 Nov 2022 in cs.DS

Abstract: In this paper, we introduce an over-time variant of the well-known prophet-inequality with i.i.d. random variables. Instead of stopping with one realized value at some point in the process, we decide for each step how long we select the value. Then we cannot select another value until this period is over. The goal is to maximize the expectation of the sum of selected values. We describe the structure of the optimal stopping rule and give upper and lower bounds on the prophet-inequality. - Which, in online algorithms terminology, corresponds to bounds on the competitive ratio of an online algorithm. We give a surprisingly simple algorithm with a single threshold that results in a prophet-inequality of $\approx 0.396$ for all input lengths $n$. Additionally, as our main result, we present a more advanced algorithm resulting in a prophet-inequality of $\approx 0.598$ when the number of steps tends to infinity. We complement our results by an upper bound that shows that the best possible prophet-inequality is at most $1/\varphi \approx 0.618$, where $\varphi$ denotes the golden ratio. As part of the proof, we give an advanced bound on the weighted mediant.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com