Papers
Topics
Authors
Recent
2000 character limit reached

Prophet-Inequalities over Time (2211.10471v1)

Published 18 Nov 2022 in cs.DS

Abstract: In this paper, we introduce an over-time variant of the well-known prophet-inequality with i.i.d. random variables. Instead of stopping with one realized value at some point in the process, we decide for each step how long we select the value. Then we cannot select another value until this period is over. The goal is to maximize the expectation of the sum of selected values. We describe the structure of the optimal stopping rule and give upper and lower bounds on the prophet-inequality. - Which, in online algorithms terminology, corresponds to bounds on the competitive ratio of an online algorithm. We give a surprisingly simple algorithm with a single threshold that results in a prophet-inequality of $\approx 0.396$ for all input lengths $n$. Additionally, as our main result, we present a more advanced algorithm resulting in a prophet-inequality of $\approx 0.598$ when the number of steps tends to infinity. We complement our results by an upper bound that shows that the best possible prophet-inequality is at most $1/\varphi \approx 0.618$, where $\varphi$ denotes the golden ratio. As part of the proof, we give an advanced bound on the weighted mediant.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.