Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

$α$-Rank-Collections: Analyzing Expected Strategic Behavior with Uncertain Utilities (2211.10317v4)

Published 18 Nov 2022 in cs.GT, cs.MA, and econ.TH

Abstract: Game theory relies heavily on the availability of cardinal utility functions, but in fields such as matching markets, only ordinal preferences are typically elicited. The literature focuses on mechanisms with simple dominant strategies, but many real-world applications lack dominant strategies, making the intensity of preferences between outcomes important for determining strategies. Even though precise information about cardinal utilities is not available, some data about the likelihood of utility functions is often accessible. We propose to use Bayesian games to formalize uncertainty about the decision-makers' utilities by viewing them as a collection of normal-form games. Instead of searching for the Bayes-Nash equilibrium, we study how uncertainty in utilities is reflected in uncertainty of strategic play. To do this, we introduce a novel solution concept called $\alpha$-Rank-collections, which extends $\alpha$-Rank to Bayesian games. This allows us to analyze strategic play in, for example, non-strategyproof matching markets, for which appropriate solution concepts are currently lacking. $\alpha$-Rank-collections characterize the expected probability of encountering a certain strategy profile under replicator dynamics in the long run, rather than predicting a specific equilibrium strategy profile. We experimentally evaluate $\alpha$-Rank-collections using instances of the Boston mechanism, finding that our solution concept provides more nuanced predictions compared to Bayes-Nash equilibria. Additionally, we prove that $\alpha$-Rank-collections are invariant to positive affine transformations, a standard property for a solution concept, and are efficient to approximate.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.