Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Alignment of Group Fairness with Attribute Privacy (2211.10209v3)

Published 18 Nov 2022 in cs.LG and cs.CR

Abstract: Group fairness and privacy are fundamental aspects in designing trustworthy machine learning models. Previous research has highlighted conflicts between group fairness and different privacy notions. We are the first to demonstrate the alignment of group fairness with the specific privacy notion of attribute privacy in a blackbox setting. Attribute privacy, quantified by the resistance to attribute inference attacks (AIAs), requires indistinguishability in the target model's output predictions. Group fairness guarantees this thereby mitigating AIAs and achieving attribute privacy. To demonstrate this, we first introduce AdaptAIA, an enhancement of existing AIAs, tailored for real-world datasets with class imbalances in sensitive attributes. Through theoretical and extensive empirical analyses, we demonstrate the efficacy of two standard group fairness algorithms (i.e., adversarial debiasing and exponentiated gradient descent) against AdaptAIA. Additionally, since using group fairness results in attribute privacy, it acts as a defense against AIAs, which is currently lacking. Overall, we show that group fairness aligns with attribute privacy at no additional cost other than the already existing trade-off with model utility.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.