Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Credit-cognisant reinforcement learning for multi-agent cooperation (2211.10100v1)

Published 18 Nov 2022 in cs.LG and cs.MA

Abstract: Traditional multi-agent reinforcement learning (MARL) algorithms, such as independent Q-learning, struggle when presented with partially observable scenarios, and where agents are required to develop delicate action sequences. This is often the result of the reward for a good action only being available after other agents have taken theirs, and these actions are not credited accordingly. Recurrent neural networks have proven to be a viable solution strategy for solving these types of problems, resulting in significant performance increase when compared to other methods. In this paper, we explore a different approach and focus on the experiences used to update the action-value functions of each agent. We introduce the concept of credit-cognisant rewards (CCRs), which allows an agent to perceive the effect its actions had on the environment as well as on its co-agents. We show that by manipulating these experiences and constructing the reward contained within them to include the rewards received by all the agents within the same action sequence, we are able to improve significantly on the performance of independent deep Q-learning as well as deep recurrent Q-learning. We evaluate and test the performance of CCRs when applied to deep reinforcement learning techniques at the hands of a simplified version of the popular card game Hanabi.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.