Papers
Topics
Authors
Recent
2000 character limit reached

Vision Transformers in Medical Imaging: A Review (2211.10043v1)

Published 18 Nov 2022 in cs.CV and cs.AI

Abstract: Transformer, a model comprising attention-based encoder-decoder architecture, have gained prevalence in the field of NLP and recently influenced the computer vision (CV) space. The similarities between computer vision and medical imaging, reviewed the question among researchers if the impact of transformers on computer vision be translated to medical imaging? In this paper, we attempt to provide a comprehensive and recent review on the application of transformers in medical imaging by; describing the transformer model comparing it with a diversity of convolutional neural networks (CNNs), detailing the transformer based approaches for medical image classification, segmentation, registration and reconstruction with a focus on the image modality, comparing the performance of state-of-the-art transformer architectures to best performing CNNs on standard medical datasets.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.