Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The communication cost of security and privacy in federated frequency estimation (2211.10041v1)

Published 18 Nov 2022 in cs.IT, cs.DS, and math.IT

Abstract: We consider the federated frequency estimation problem, where each user holds a private item $X_i$ from a size-$d$ domain and a server aims to estimate the empirical frequency (i.e., histogram) of $n$ items with $n \ll d$. Without any security and privacy considerations, each user can communicate its item to the server by using $\log d$ bits. A naive application of secure aggregation protocols would, however, require $d\log n$ bits per user. Can we reduce the communication needed for secure aggregation, and does security come with a fundamental cost in communication? In this paper, we develop an information-theoretic model for secure aggregation that allows us to characterize the fundamental cost of security and privacy in terms of communication. We show that with security (and without privacy) $\Omega\left( n \log d \right)$ bits per user are necessary and sufficient to allow the server to compute the frequency distribution. This is significantly smaller than the $d\log n$ bits per user needed by the naive scheme, but significantly higher than the $\log d$ bits per user needed without security. To achieve differential privacy, we construct a linear scheme based on a noisy sketch which locally perturbs the data and does not require a trusted server (a.k.a. distributed differential privacy). We analyze this scheme under $\ell_2$ and $\ell_\infty$ loss. By using our information-theoretic framework, we show that the scheme achieves the optimal accuracy-privacy trade-off with optimal communication cost, while matching the performance in the centralized case where data is stored in the central server.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube