Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The communication cost of security and privacy in federated frequency estimation (2211.10041v1)

Published 18 Nov 2022 in cs.IT, cs.DS, and math.IT

Abstract: We consider the federated frequency estimation problem, where each user holds a private item $X_i$ from a size-$d$ domain and a server aims to estimate the empirical frequency (i.e., histogram) of $n$ items with $n \ll d$. Without any security and privacy considerations, each user can communicate its item to the server by using $\log d$ bits. A naive application of secure aggregation protocols would, however, require $d\log n$ bits per user. Can we reduce the communication needed for secure aggregation, and does security come with a fundamental cost in communication? In this paper, we develop an information-theoretic model for secure aggregation that allows us to characterize the fundamental cost of security and privacy in terms of communication. We show that with security (and without privacy) $\Omega\left( n \log d \right)$ bits per user are necessary and sufficient to allow the server to compute the frequency distribution. This is significantly smaller than the $d\log n$ bits per user needed by the naive scheme, but significantly higher than the $\log d$ bits per user needed without security. To achieve differential privacy, we construct a linear scheme based on a noisy sketch which locally perturbs the data and does not require a trusted server (a.k.a. distributed differential privacy). We analyze this scheme under $\ell_2$ and $\ell_\infty$ loss. By using our information-theoretic framework, we show that the scheme achieves the optimal accuracy-privacy trade-off with optimal communication cost, while matching the performance in the centralized case where data is stored in the central server.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.