Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Generative Adversarial Training Can Improve Neural Language Models (2211.09728v1)

Published 2 Nov 2022 in cs.CL and cs.LG

Abstract: While deep learning in the form of recurrent neural networks (RNNs) has caused a significant improvement in neural language modeling, the fact that they are extremely prone to overfitting is still a mainly unresolved issue. In this paper we propose a regularization method based on generative adversarial networks (GANs) and adversarial training (AT), that can prevent overfitting in neural LLMs. Unlike common adversarial training methods such as the fast gradient sign method (FGSM) that require a second back-propagation through time, and therefore effectively require at least twice the amount of time for regular training, the overhead of our method does not exceed more than 20% of the training of the baselines.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.