Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Review of Deep Learning Techniques for Protein Function Prediction (2211.09705v1)

Published 27 Oct 2022 in q-bio.BM, cs.AI, and cs.LG

Abstract: Deep Learning and big data have shown tremendous success in bioinformatics and computational biology in recent years; artificial intelligence methods have also significantly contributed in the task of protein function classification. This review paper analyzes the recent developments in approaches for the task of predicting protein function using deep learning. We explain the importance of determining the protein function and why automating the following task is crucial. Then, after reviewing the widely used deep learning techniques for this task, we continue our review and highlight the emergence of the modern State of The Art (SOTA) deep learning models which have achieved groundbreaking results in the field of computer vision, natural language processing and multi-modal learning in the last few years. We hope that this review will provide a broad view of the current role and advances of deep learning in biological sciences, especially in predicting protein function tasks and encourage new researchers to contribute to this area.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.