Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Algebraic optimization of sequential decision problems (2211.09439v1)

Published 17 Nov 2022 in math.OC, cs.SY, eess.SY, and math.AG

Abstract: We study the optimization of the expected long-term reward in finite partially observable Markov decision processes over the set of stationary stochastic policies. In the case of deterministic observations, also known as state aggregation, the problem is equivalent to optimizing a linear objective subject to quadratic constraints. We characterize the feasible set of this problem as the intersection of a product of affine varieties of rank one matrices and a polytope. Based on this description, we obtain bounds on the number of critical points of the optimization problem. Finally, we conduct experiments in which we solve the KKT equations or the Lagrange equations over different boundary components of the feasible set, and compare the result to the theoretical bounds and to other constrained optimization methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube