Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

CapEnrich: Enriching Caption Semantics for Web Images via Cross-modal Pre-trained Knowledge (2211.09371v3)

Published 17 Nov 2022 in cs.CV and cs.MM

Abstract: Automatically generating textual descriptions for massive unlabeled images on the web can greatly benefit realistic web applications, e.g. multimodal retrieval and recommendation. However, existing models suffer from the problem of generating ``over-generic'' descriptions, such as their tendency to generate repetitive sentences with common concepts for different images. These generic descriptions fail to provide sufficient textual semantics for ever-changing web images. Inspired by the recent success of Vision-Language Pre-training (VLP) models that learn diverse image-text concept alignment during pretraining, we explore leveraging their cross-modal pre-trained knowledge to automatically enrich the textual semantics of image descriptions. With no need for additional human annotations, we propose a plug-and-play framework, i.e CapEnrich, to complement the generic image descriptions with more semantic details. Specifically, we first propose an automatic data-building strategy to get desired training sentences, based on which we then adopt prompting strategies, i.e. learnable and template prompts, to incentivize VLP models to generate more textual details. For learnable templates, we fix the whole VLP model and only tune the prompt vectors, which leads to two advantages: 1) the pre-training knowledge of VLP models can be reserved as much as possible to describe diverse visual concepts; 2) only lightweight trainable parameters are required, so it is friendly to low data resources. Extensive experiments show that our method significantly improves the descriptiveness and diversity of generated sentences for web images. The code is available at https://github.com/yaolinli/CapEnrich.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube