Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CapEnrich: Enriching Caption Semantics for Web Images via Cross-modal Pre-trained Knowledge (2211.09371v3)

Published 17 Nov 2022 in cs.CV and cs.MM

Abstract: Automatically generating textual descriptions for massive unlabeled images on the web can greatly benefit realistic web applications, e.g. multimodal retrieval and recommendation. However, existing models suffer from the problem of generating ``over-generic'' descriptions, such as their tendency to generate repetitive sentences with common concepts for different images. These generic descriptions fail to provide sufficient textual semantics for ever-changing web images. Inspired by the recent success of Vision-Language Pre-training (VLP) models that learn diverse image-text concept alignment during pretraining, we explore leveraging their cross-modal pre-trained knowledge to automatically enrich the textual semantics of image descriptions. With no need for additional human annotations, we propose a plug-and-play framework, i.e CapEnrich, to complement the generic image descriptions with more semantic details. Specifically, we first propose an automatic data-building strategy to get desired training sentences, based on which we then adopt prompting strategies, i.e. learnable and template prompts, to incentivize VLP models to generate more textual details. For learnable templates, we fix the whole VLP model and only tune the prompt vectors, which leads to two advantages: 1) the pre-training knowledge of VLP models can be reserved as much as possible to describe diverse visual concepts; 2) only lightweight trainable parameters are required, so it is friendly to low data resources. Extensive experiments show that our method significantly improves the descriptiveness and diversity of generated sentences for web images. The code is available at https://github.com/yaolinli/CapEnrich.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Linli Yao (14 papers)
  2. Weijing Chen (5 papers)
  3. Qin Jin (94 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub